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LETTER TO THE EDITOR 

Towards electrodynamical models of particles 

P F Browne 
Department of Pure and Applied Physics, University of Manchester Institute of Science and 
Technology, Manchester M60 lQD,  UK 

Received 18 November 1980 

Abstract. By treating the field of a charge in a stationary orbit as a rotating field no radiation 
term arises. Stationary circular orbits of positronium are considered from this viewpoint, a 
new interparticle force being obtained. Bohr quantisation of canonical angular momentum 
leads to two sets of stationary states, one familiar and the other with properties which permit 
identification with the neutrino. Systems of one or two neutrinos and an electron afford 
models for charged pions and muons. Other systems are considered, one with properties 
which might permit identification with the proton. 

A problem which has never been satisfactorily resolved is why an electron in a 
stationary orbit fails to radiate, despite its acceleration. Stationary orbits are selected 
by the Wilson-Sommerfeld quantisation conditions, which might be introduced in the 
capacity of boundary conditions for a continuum of field energy. Whatever the status of 
these conditions, there is no doubt concerning their efficacy for the discovery of new 
phenomena; one recalls quantisation of fluxoid in superconductors, most clearly 
revealed by the Bohm-Aharanov effect for the superconducting medium (Jaklevic et a1 
1965), and quantisation of circulation in superfluids (Rayfield and Reif 1964). For the 
role of the rules in stochastic electrodynamics see Boyer (1978). 

Given a rotating charge, or system of charges, there are two fields to consider: (i) one 
may employ the Lienard-Wiechert solution of Maxwell’s equations to calculate the 
field in the conventional manner; or (ii) one may transform the field with respect to the 
co-rotating frame to the laboratory reference system. In the case of uniform linear 
motion it is immaterial which procedure is adopted; the same field results from either. 
But in the case of rotational motion different results are obtained unless the correct 
constitutive properties of the medium are assumed in the situation when background 
matter rotates. 

An example of the difference between the fields obtained by procedures (i) and (ii) is 
provided by the Oppenheimer-Schiff paradox (Schiff 1939, Corum 1977). Here the 
field is that of a charged rotating concentric sphere capacitor. Externally to the 
capacitor the electric field always vanishes, but the magnetic field obtained by method 
(i) does not vanish whereas that obtained by method (ii) does vanish. 

I offer the hypothesis that the field of the electron in a stationary orbit is of type (ii), 
not type (i) as usually assumed. The absence of a radiation term in the field is then 
assured. But field lines, and indeed light rays, will be curved, implying non-uniform 
constitutional properties for the medium (Browne 1977). This is tantamount to 
proposing that the co-rotating frame, not the laboratory frame, has inertial status-a 
consequence, evidently, of the quantisation conditions. 
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Consider, in the light of the hypothesis, stationary orbits of positronium. Let 
charges el and e2 follow a common circular orbit of radius r and diameter r12 ,  which is 
the interparticle spacing at any instant for the rest frame of the centre of mass. Let the 
velocities be p l c  = o x rl and p2c = o x r2, and introduce the notation y = ( 1  - p 2 ) - ' / 2 .  
Either charge has rest mass m.  

With respect to the co-rotating frame S' the field has 4-potential (0, 0, 0, c p ' ) ,  where 
cp' = e2/r12 if we consider the field due to e2 evaluated at the position of e l .  We rotate 
this field to a reference system R which rotates relative to S'.  Following Corum (1977,  
1980) we choose R to be the field of rest frames of particles of a rotating fluid, bearing in 
mind that the time axes of these tetrads will not be parallel and that the system is 
anholonomic. The 4-potential with respect to R is obtained by a Lorentz trans- 
formation for velocity field pl; it is (A, c p ) ,  where 

cp = y l e J r 1 2 ,  A = Y I P I ~ Z / ~ I Z .  ( 1 )  

In obtaining fields from these potentials the object of anholonomity makes a contribu- 
tion (Corum 1977).  One finds 

E = y l e ~ & l / r : ~ ,  B = p l X E ,  ( 2 )  

where tZ1 is a unit vector directed from e2 to e l .  Notice that the velocity entering into 
these fields is PI,  not p2, because the velocity of the field lines at the position of e l  is not 
the velocity of the source charge e2 but that of the field charge e l .  Corum uses the result 
B = o1 x E to resolve the Schiff paradox. 

The Lorentz force on el due to the fields ( 2 )  is 

(3) F=e l (E+81xB)=e l ( l -pT)E=( l -p l )  2 1/2 e1e2?21/r:I9 

The equation for circular orbit motion under this force is 

y p 2 m c 2 / r  = y ( 1  -p2)e2/rT2.  (4) 

By introducing U = d / r 1 2 ,  where d = e 2 / m c 2  = 2.82 x 
one may simplify (4) to 

cm, and noting that r 1 2  = 2r,  

2 y 2 p 2  = U .  ( 5 )  

For the canonical angular momentum of the system we assume 2r x ( y p m c  + e A / c ) ,  
where A is given by ( 1 ) .  Bohr quantisation of this quantity yields 

y p ( l - u ) = n u / a ,  (6) 

where a = e 2 / h c  = 11137. 
Elimination of U between (5) and (6 )  yields a quadratic equation for yp with roots 

yp = - (n /2a ) [ l+a2 /n2r t (1+2a2 /n2)1 '2] .  ( 7 )  

y'p'  = a / 2 n ,  U '  = a 2 / 2 n 2 ,  (8a)  

y"p" = - n / a ,  U''= 2 n 2 / 2 a .  ( 8 b )  

To highest order in a2  the roots, and the corresponding values of U ,  are 

The negative sign of y"p" merely means that the interaction contribution to the angular 
momentum in (6) is dominant, and it can be eliminated by reversal of p". 
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For interaction energy under the velocity-dependent force law ( 3 )  we adopt the 
expression 

V = el(rp -PI * A) = - y1 (1  -P?)e2/r12, ( 9 )  

where one uses ( 1 )  for the potentials, noting that e1e2 = -e2. The justification for this 
result will be given in the more detailed work (Browne 1981). Then the total energy of 
the system is W, where 

w = 2ymc2+ v = 2(1 -p2)1 /2mc2.  (10)  

Hence the equation of motion ( 4 )  has been to obtain V = -2yp2mc2.  The result (10)  is 
in agreement with that obtained by several other authors (Schild 1963, Dorling 1970, 
Andersen and von Baeyer 197 1 ) .  Substituting from ( 8 ) ,  the two sets of stationary states 
have energies 

W’ = (2  - a 2 / 4 n 2 ) m c 2 ,  ( I l a )  

w”= ( 2 a / n ) m c 2 .  ( 1 l b )  

The solution ( 8 a )  and ( 1  l a )  describes the ‘atom-like’ states of positronium already 
familiar to us. Orbital motion is nonrelativistic ( y p  << l), orbital diameters are large 
compared with d (U << l ) ,  and energies differ from 2mc2 by order a2mc2.  

The solution ( 8 b )  and ( l l b )  describes new states, which will be termed ‘particle- 
like’. Orbital motion is ultrarelativistic ( y p  >> l ) ,  orbital diameters are small compared 
with d (U >> l ) ,  and energies now differ from zero by order amc2. Motion, of necessity, 
is ultrarelativistic when interaction energy greatly exceeds rest energy, a feature of the 
tightly bound states. 

There has been no explicit introduction of spin variables or of vacuum polarisation 
effects. In Dirac’s theory both are implicit in the relativistic equations, and I take the 
attitude that the same should be true for classical electrodynamics (Browne 1970). For 
this reason the theory of Schild and Schlosser (1968) is suspect. 

Positronium in one of the ultrarelativistic particle-like states will be termed a 
‘positronium unit’ or simply ‘unit’. Since W” = 7.46n-’ keV the spectroscopy of these 
states is at x-ray wavelengths, but the probability of radiative interactions will be 
exceedingly small since rY2 is so small compared with the wavelength. Compare the 
probabilities for 2-photon decay from the n = 1 atom-like and particle-like states. The 
wavenumbers for the emitted photons are k’ and k”, where hck’ = 2mc2 and hck” = 
2amc2,  so that k‘’ /k’=a.  From (8) we find that rY2/r i2  = a 4 / 4 .  For the ratio of 
transition probabilities one finds (k”/k’)3(ry2/r i2)2 = a”/16 = 1.96 x In the case 
of the atom-like state one knows that the probability of 2-photon decay is 8 x lo9 s-’ 
(Heitler 1954), and hence that for the particle-like state is 1 - 6 ~ 1 0 - ’ ~ s - ’ .  For 
comparison, the transition probability for the 21 cm line of hydrogen is 2.85 x s-’, 
so that if positronium units have abundance comparable with neutral hydrogen in the 
Galaxy detection should be possible. But there may be a complication; if the unit has 
spin i, as suggested below, decay may not occur even at this rate. 

Although the net charge of a positronium unit is zero, the unit should possess a 
magnetic moment because spin moment of the electron and positron will be parallel if 
the spins are antiparallel. But this moment p” will not equal two Bohr magnetons. In 
the co-rotating frame the effective mass of either charge is m*,  where 2m*c2= 
2mc - e  / rT2  = -e2/ry2. Assuming a gyromagnetic ratio e /m*c ,  one estimates 2 2  

p” = ( e / m * c ) ( n h )  = -ne&/a = -aed/2n, (12)  
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where rY2 is obtained from (8). Another way to justify this result is to consider the 
interaction angular momentum introduced by assigning to one charge a mangetic 
moment ip”;  on equating this to i n h  one obtains for p” the result (12) .  

A finite magnetic moment p” seems inconsistent with zero spin. Under certain 
circumstances the Wilson-Sommerfeld quantum numbers equal an integer plus one- 
half (Beers 1972, Boyer 1978). If the only non-ignorable coordinate is r, the Bohr 
quantum number c will equal an integer plus one-half. On such grounds one might 
consider spin $ for the positronium unit. Half-integral angular momentum of orbital 
origin implies a state of imaginary parity. 

If one postulates spin 1 for the positronium unit, the system has properties which 
permit its identification with the neutrino. The identification implies a neutrino rest 
mass of 2 a m l n  and a neutrino magnetic moment aed/2n ( a 2 / n  Bohr magnetons). 
Both these quantities tend to zero as n tends to infinity; the model therefore predicts 
variable mass and moment for the particle. Since the direction of p” relative to the 
direction of orbital angular momentum has not been specified, the model leaves room 
for two types of neutrino, presumably with parities +i and -i. Might these be the Y, and 
v,? The possible intrinsic parities for Dirac fermions are k l  and hi, the parity of a 
fermion-antifermion pair always being - 1 (Roman 1964). Then the antineutrino 
would have the same parity as the neutrino. 

Now, let two positronium units orbit (at diametrically opposed instantaneous 
positions) around an electron or positron, which remains stationary at the centre of 
mass, the coupling being spin-orbit in character. Motion of the magnetic moment p” (a 
Lorentz invariant for transverse polarisation) with velocity p c  gives rise to an electric 
moment E ’ ’ =  p x p ” .  In the fields (2) an orbiting unit has potential energy V and 
experiences force F, where 

V = 6‘’ * E + p ” t B = 0, (13)  

In evaluating the gradients of the fields, @ ( r )  and y ( r )  are treated as fields; evidently y-’ 
changes the constitutional properties of the medium as would a classical permittivity 
and (equal) permeability. 

IF1 = E”SE/Sr + p”SB/Sr = ypp”e/r3.  

Under the force (13)  the equation for a circular orbit is 

ypm”c2/r  = yppL’e/r3. (14)  

2 / r  x (ypm”c + e A / c ) /  = Eh, 

Bohr quantisation of canonical angular momentum now yields 

(15) 

where A = y p ’ ” ~  r/r3.  On substituting for A and then using (14)  to eliminate p”, one 
obtains from ( 1  5 )  

4ypm“cr = A A .  (16)  
The ultrarelativistic solution of (14)  and (16)  is 

r = d / 2 ,  y = nf i /4a2 .  (17)  

w = 2 ym”c2 + mc2 + v = (fila + l ) m c 2 .  (18) 

For the energies of these states one has 

Replacing f i  by E’ +i, since the spin of the central charge should be included in (15) ,  one 
finds W = (A’+i)mc2/a  + mc2,  For A’ = 1 this gives W = 206.5mc2. 
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The rest energy of the muon is 206.8mc2. Thus the system (‘magnetium’) has the 
correct rest energy, the correct spin, and the correct charge for identification with the 
muon. Moreover simple decomposition into constituents will account for the decay of 
the muon. Since the spins of the orbiting positronium units must be opposed to satisfy 
the Pauli principle, and their magnetic moments must be parallel for attraction to the 
central charge, it follows that one of the orbiting units must be a neutrino of electron 
type and the other a neutrino of muon type. Hence the decay will be p + +  e+, V,, ve as 
observed. 

Now suppose that only one unit is in orbit around the charge. Despite the unequal 
masses of the unit and the charge, the centre of mass tends to their midpoint in the 
ultrarelativistic extreme. Following the same steps as above, one is led to ultrarela- 
tivistic state energies W = 2iimc2/a. The state ii = 1 has energy 274mc2. 

The rest energy of the charged pion is 273-lmc2.  Thus, in regard to rest mass, spin 
and charge, magnetium with one unit has the properties of the charged pion. Decay 
evidently involves creation of a v,, z7, pair, of which V ,  is retained and v, released. This 
implies that T++ p+,  v,, which is the observed decay. 

The very different reactivities of the muon and pion can also be understood. It is a 
simple case of a closed shell. The relationship of the muon to the pion might be 
compared with that of an inert gas atom to a monovalent metal atom. 

Regarding the 7 ~ ’  one must contemplate a molecular-type complex of two 
magnetium particles, each with one unit but with opposite charges-that is a complex of 
7 ~ +  and T-, the additional rest energy of the second pion being cancelled approximately 
by the binding energy. 

Consider, now, a system (‘trionium’) in which two electrons orbit (at diametrically 
opposed instantaneous positions) about a positron or vice versa. Again assuming 
rotating fields of type (2), it turns out (by following the steps that led to (8) and (1 1)) that 
the ultrarelativistic states now have energies W = 2(1 -p2)1’2mc + mc -- mc2. That 
is, the mass of the system differs little from that of the central charge. The orbiting 
charges have ultrarelativistic motion -yffPf’ = n / a  and the orbital diameters are rY2 = 
3a2d/2n2.  

Now trionium has an orbital current. Coupling to the spin magnetic moment of the 
central charge is already implicit in the above theory. But suppose that a second pair of 
orbiting charges are introduced, of sign opposite to the first pair. Assume a larger orbit 
co-planar with the first one. The second pair couple not only to the net charge of 
trionium (&e), but also magnetically to the orbital current. If the orbital current of 
trionium is treated as a magnetic dipole, no dramatic change of energy occurs, because 
again one obtains an expression (10). In second order, however, there arises a 
contribution 5.2nmc2 to the energy. Now continue to add pairs of identical charges in 
further co-planar orbits of increasing radius. It can be shown that the limiting radius 
tends to d, but calculation of the energy is not simple. One wonders if such a system 
might account for the proton. It should be extremely stable because charges in each 
orbit cannot annihilate each other. 

For many years I have been of the opinion that the ultimate constituents of matter 
cannot be other than electrons and positrons, the strong forces of particle physics being 
basically electromagnetic forces (Browne 1962, 1966). Sternglass (1961, 1965) also 
seems to have shared this philosophy. However, the problems confronting such a 
viewpoint are substantial, and my impression now (following a concerted attack over 
some three years) is that they can be overcome. I take the view that the initial approach 
must be based on classical dynamics, as was so for atomic physics. Until dynamical 

2 2 
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systems have been defined classically, the application of quantum electrodynamics is 
not particularly meaningful. In any case, the quantum electrodynamics of strong 
interactions (e2/rI2 >> mc’) has not been developed to any extent, owing to the mixing of 
the positive and negative energy states and the failure of perturbation theory methods. 
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